Approximation Theorems for Zero-Sum Nonstationary Stochastic Games

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Definable Zero-Sum Stochastic Games

Definable zero-sum stochastic games involve a finite number of states and action sets, reward and transition functions that are definable in an o-minimal structure. Prominent examples of such games are finite, semi-algebraic or globally subanalytic stochastic games. We prove that the Shapley operator of any definable stochastic game with separable transition and reward functions is definable in...

متن کامل

Bias and Overtaking Equilibria for Zero-Sum Stochastic Differential Games

This paper deals with zero-sum stochastic differential games with long-run average payoffs. Our main objective is to give conditions for existence and characterization of bias and overtaking optimal equilibria. To this end, first we characterize the family of optimal average payoff strategies. Then, within this family, we impose suitable conditions to determine the subfamilies of bias and overt...

متن کامل

Value Function Approximation in Zero-Sum Markov Games

This paper investigates value function approximation in the context of zero-sum Markov games, which can be viewed as a generalization of the Markov decision process (MDP) framework to the two-agent case. We generalize error bounds from MDPs to Markov games and describe generalizations of reinforcement learning algorithms to Markov games. We present a generalization of the optimal stopping probl...

متن کامل

Reversibility and Oscillations in Zero-sum Discounted Stochastic Games

We show that by coupling two well-behaved exit-time problems one can construct two-person zero-sum stochastic games with finite state space having oscillating discounted values. This unifies and generalizes recent examples due to Vigeral (2013) and Ziliotto (2013).

متن کامل

Two-Person Zero-Sum Stochastic Games with Semicontinuous Payoff

Consider a two-person zero-sum stochastic game with Borel state space S, compact metric action sets A, B and law of motion q such that the integral under q of every bounded Borel measurable function depends measurably on the initial state s and continuously on the actions (a,b) of the players. Suppose the payoff is a bounded function f of the infinite history of states and actions such that f i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1984

ISSN: 0002-9939

DOI: 10.2307/2044849